Reg. No.				

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI - 628 502.

UG DEGREE END SEMESTER EXAMINATIONS - APRIL 2025.

(For those admitted in June 2023 and later)

PROGRAMME AND BRANCH: B.Sc., INFORMATION TECHNOLOGY

SE	M	CATEGORY	COMPONENT	COURSE CODE	COURSE TITLE
I		PART - III	ELECTIVE GENERIC - 1	U23IT1A1	DIGITAL LOGIC FUNDAMENTALS

				FUNDAMENTALS		
Date	& Sessi	on:24.	04.2025/AN Time: 3 Hours	Maximum 75 Marks		
Course Outcome	Bloom's K-level	Q. No.	SECTION - A (10 X 1 = 10 Marks) Answer ALL Questions.			
CO1	K1	1.	What is the binary equivalent of the decimal number 10? a) 1010 b) 1001 c) 1100 d) 1110			
CO1	K2	2.	Which of the following is a code used for error dete a) ASCII b) Excess-3 Code c) Gray Code	ction? e d) Binary Code		
CO2	K1	3.	The Sum of Products (SOP) method is used in: a) Boolean Algebra b) Arithmetic Ope c) Memory Design d) Data Storage	rations		
CO2	K2	4.	In a Karnaugh Map, pairs are used for: a) Simplifying expressions b) Combining adja c) Creating truth tables d) Designing circu			
CO3	K1	5.	The 2's complement of a binary number is used for a) Addition only b) Subtraction c) Multip			
CO3	K2	6.	Which of the following circuits is used for binary ac a) Decoder b) Full Adder c) Multip			
CO4	K1	7.	An RS Flip-Flop is primarily used for: a) Counting b) Storing a sir c) Arithmetic operations d) Data transm	_		
CO4	K2	8.	A Synchronous Counter is characterized by: a) Asynchronous inputs b) All flip-flops being c) Ripple effect d) No clock signal	g triggered simultaneously		
CO5	K1	9.	Random Access Memory (RAM) is: a) Non-volatile b) Volatile c) Permaner	nt storage d) Read-only		
CO5	K2	10.	The primary function of a Multiplexer is to: a) Store data b) Select or c) Perform arithmetic operations d) Decode s	ne of many inputs signals		
Course Outcome	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - B \text{ (5 X 5 = 25 Marks)}}{\text{Answer } \frac{\text{ALL}}{\text{Questions choosing either (a) or (b)}}$			
CO1	КЗ	11a.	Convert the decimal number 25.625 to its binary e (OR)	quivalent. Show all steps.		
CO1	К3	11b.	Explain the Gray code and its significance in minir systems.	nizing errors in digital		

CO2	КЗ	12a.	Simplify the Boolean expression F = A'B + AB' + AB using Karnaugh Map. (OR)
CO2	К3	12b.	Design a 2-to-4 decoder using basic logic gates and write its truth table.
CO3	K4	13a.	Implement a 4-bit binary adder-subtractor circuit using Full Adders. Explain its working with a diagram. (OR)
CO3	K4	13b.	Discuss the arithmetic operations in 2's complement representation with examples of addition and subtraction.
CO4	K4	14a.	Design a 3-bit synchronous up-counter using JK flip-flops. Include the state table and logic diagram. (OR)
CO4	K4	14b.	Explain the working of a shift register and its applications in data storage and transfer.
CO5	К3	15a.	Describe the architecture of a RAM with a block diagram. How is memory decoding achieved? (OR)
CO5	КЗ	15b.	Explain the working of a 555 Timer in a stable mode and derive the expression for its output frequency.

Course Outcome	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - C \text{ (5 X 8 = 40 Marks)}}{\text{Answer } \underline{\text{ALL }} \text{Questions choosing either (a) or (b)}}$
CO1	КЗ	16a.	Design a 7-segment display decoder using logic gates. Include the truth table, K-map simplification, and circuit diagram. (OR)
CO1	КЗ	16b.	Evaluate the advantages of using Gray code over binary code in rotary encoders and error correction systems.
CO2	K5	17a.	Implement a 4:1 multiplexer using universal gates (NAND/NOR) and verify its operation with a truth table. (OR)
CO2	K5	17b.	Analyze the role of don't care conditions in K-map simplification with a real-world example (e.g., BCD to 7-segment decoder).
CO3	K5	18a.	Design an 8-bit Arithmetic Logic Unit (ALU) capable of performing addition, subtraction, AND, and OR operations. Use block diagrams and explain control signals. (OR)
CO3	K5	18b.	Compare sign-magnitude and 2's complement representations for signed integers. Discuss their impact on arithmetic operations.
CO4	K6	19a.	Develop a mod-10 ripple counter using JK flip-flops. Include timing diagrams and explain propagation delays. (OR)
CO4	К6	19b.	Simulate a 4-bit shift register using D flip-flops and demonstrate serial-in-parallel-out (SIPO) operation with waveforms.
CO5	K5	20a.	Design a digital voltmeter circuit using an ADC (Analog-to-Digital Converter) and a 7-segment display. Explain each component's role. (OR)
CO5	K5	20b.	Propose a programmable logic device (PLD)-based solution for a traffic light controller. Include state diagrams and HDL code snippets.